首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   11篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   14篇
  2010年   20篇
  2009年   20篇
  2008年   14篇
  2007年   16篇
  2006年   6篇
  2005年   10篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1959年   1篇
  1954年   1篇
  1941年   1篇
排序方式: 共有210条查询结果,搜索用时 311 毫秒
11.
A large variety of cation transport systems are involved in the regulation of calcium homeostasis in endothelial cells. The focus of the present study is to determine the contribution of nonselective cation channels from the TRP (transient receptor potential) family to cellular calcium homeostasis of porcine aortic endothelial cells (PAEC). One member of the TRPV (vanniloid) subfamily, TRPV4, has previously been shown to be involved in cation transport induced by a large variety of stimulations including osmolarity, temperature, mechanical stress, and phosphorylation. Here, we demonstrate the existence of several TRP proteins, including TRPV4, in PAEC using RT-PCR. To test whether this channel is functional, we performed FURA-2 calcium measurements and whole-cell patch-clamp experiments. We observed the induction of large calcium signals following mechanical stress, altered extracellular temperature, and the selective TRPV4 activator 4-α -PDD. These effects were diminished in the presence of the TRPV4 inhibitor miconazole, suggesting the involvement of this channel in mediating endothelial calcium signals. The large amounts of transported calcium and the short signaling ways suggest a potentially important role of this channel in many physiological processes.  相似文献   
12.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   
13.
Abstract: Loss of quality brood rearing habitat, resulting in reduced chick growth and poor recruitment, is one mechanism associated with decline of greater sage-grouse (Centrocercus urophasianus) populations. Low chick survival rates are typically attributed to poor-quality brood rearing habitat. Models that delineate suitability of sage-grouse nesting or brood rearing habitat at the landscape scale can provide key insights into the relationship between sage-grouse and the environment, allowing managers to identify and prioritize habitats for protection or restoration. We used Southwest Regional Gap landcover types to identify early and late greater sage-grouse brood rearing in east-central Nevada. We conducted an Ecological Niche Factor Analysis to 1) examine the effect these landcover types and other ecogeographical variables have on sage-grouse selection of brood rearing habitat, and 2) generate landscape-scale suitability maps. We also evaluated if incorporating a fitness component (brood survival) in landscape spatial analyses of habitat quality influenced our assessment of habitat suitability. Because 36% of our 6,500-km2 study area was identified as early brood rearing habitat, we believe this habitat may not be limiting greater sage-grouse populations in east-central Nevada, USA, at least in wet years. We found strong selection for particular landcover types (e.g., higher elevation, moist sites with riparian shrubs or montane sagebrush) during late brood rearing. Late brood rearing habitat on which broods were successfully reared represented only 2.8% of the study area and had a restricted distribution, suggesting the potential that such habitat could limit sage-grouse populations in east-central Nevada.  相似文献   
14.
Sexual selection against immigrants is a mechanism that can regulate premating isolation between populations but, so far, few field studies have examined whether males can discriminate between immigrant and resident females. Males of the damselfly Calopteryx splendens show mate preferences and are able to force pre‐copulatory tandems. We related male mate responses to the ecological characteristics of female origin, geographic distances between populations, and morphological traits of females to identify factors influencing male mate discrimination. Significant heterogeneity between populations in male mate responses towards females was found. In some populations, males discriminated strongly against immigrant females, whereas the pattern was reversed or nonsignificant in other populations. Immigrant females were particularly attractive to males when they came from populations with similar predation pressures and densities of conspecifics. By contrast, immigrant females from populations with strongly dissimilar predation pressures and conspecific densities were not attractive to males. Differences in the abiotic environment appeared to affect mating success to a lesser degree. This suggests that male mate discrimination is context‐dependent and influenced by ecological differences between populations, a key prediction of ecological speciation theory. The results obtained in the present study suggest that gene‐flow is facilitated between ecologically similar populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 506–518.  相似文献   
15.
The tribe Naucleeae has recently been recircumscribed on the basis of both morphological and molecular [ rbcL , trnT-F , internal transcribed spacer (ITS)] evidence, and has been found to be the sister group of the tribe Hymenodictyeae Razafim. & B. Bremer. In order to find pollen morphological support for this new classification, the pollen and orbicules of 65 species, representing 23 Naucleeae and the two Hymenodictyeae genera, were investigated by scanning electron and light microscopy. Naucleeae pollen is very small (< 20 µm) to small (20–30 µm) and its shape in equatorial view is suboblate to spheroidal or, more rarely, subprolate. Three compound apertures are present, each comprising a long and narrow ectocolpus, a circular to slightly lolongate mesoporus, and an often H-shaped endoaperture. The sexine ornamentation is perforate, rugulate, or (micro)reticulate, and supratectal elements are always absent. Apart from the variation in sexine ornamentation, the tribe is rather stenopalynous. The pollen of Hymenodictyeae is very similar to that of Naucleeae. The H-shaped endoapertures often observed probably form a synapomorphy for the clade comprising Naucleeae and Hymenodictyeae. Our pollen morphological observations are not in conflict with the widened delimitation of Naucleeae. Unambiguous pollen support for the recent subtribal or generic concepts of Naucleeae could not be found because of a lack of variation of pollen characters within the tribe. Orbicules are invariably present in the ten Naucleeae taxa investigated. They are spheroidal and smooth or irregularly folded.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 329–341.  相似文献   
16.
Many bird species start laying their eggs earlier in response to increasing spring temperatures, but the causes of variation between and within species have not been fully explained. Moreover, synchronization of the nestling period with the food supply not only depends on first‐egg dates but also on additional reproductive parameters including laying interruptions, incubation time and nestling growth rate. We studied the breeding cycle of two sympatric and closely related species, the blue tit Cyanistes caeruleus and the great tit Parus major in a rich oak‐beech forest, and found that both advanced their mean first‐egg dates by 11–12 days over the last three decades. In addition, the time from first egg to fledging has shortened by 2–3 days, through a decrease in laying interruptions, incubation time (not statistically significant) and nestling development time. This decrease is correlated with a gradual increase of temperatures during laying, suggesting a major effect of the reduction in laying interruptions. In both species, the occurrence of second clutches has strongly decreased over time. As a consequence, the average time of fledging (all broods combined) has advanced by 15.4 and 18.6 days for blue and great tits, respectively, and variance in fledging dates has decreased by 70–75%. Indirect estimates of the food peak suggest that both species have maintained synchronization with the food supply. We found consistent selection for large clutch size, early laying and short nest time (laying to fledging), but no consistent changes in selection over time. Analyses of within‐individual variation show that most of the change can be explained by individual plasticity in laying date, fledging date and nest time. This study highlights the importance of studying all components of the reproductive cycle, including second clutches, in order to assess how natural populations respond to climate change.  相似文献   
17.
18.
19.
Pollen and orbicule morphology of 35 Dioscorea L. species is described based on observations with light microscopy, and scanning and transmission electron microscopy. Pollen and orbicule characters are critically evaluated and discussed in the context of existing hypotheses of systematic relationships within the genus. Pollen is mostly bisulcate (sometimes monosulcate) with a perforate, microreticulate or striate sexine. Our results indicate that pollen data may be significant at sectional rank. The close relationship between sections Asterotricha and Enantiophyllum proposed by Burkill and Ayensu is supported by pollen morphology as all species investigated share bisulcate, perforate pollen with small perforations and a high perforation density. Macromorphological differences between the two compound-leaved sections Botryosicyos and Lasiophyton are also supported by pollen morphology; pollens of these two sections have very different perforation patterns. Orbicules in Dioscorea are mostly spherical and possess a smooth or spinulose surface. The latter is often correlated with a striate sexine.  相似文献   
20.
Retention of green leaf area in grain sorghum under post‐anthesis drought, known as stay‐green, is associated with greater biomass production, lodging resistance and yield. The stay‐green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay‐green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay‐green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay‐green were grown under a post‐anthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age‐related senescence and N uptake during grain filling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay‐green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay‐green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow more carbon and nitrogen to be allocated to the roots of stay‐green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号